
Contents

xsysroot 2
Swiss army knife to manipulate operating system images 2
Introduction . 3
Linux based OSes . 3

The ARM emulation problem . 3
Installing and upgrading xsysroot . 4

Requirements . 4
Installation . 4
What else do I need? . 4

Tutorial A: Build Raspbian for the RaspberryPI 5
Step 1: Creating a blank image 5
Step 2: Defining the image . 5
Step 3: Accessing the image . 6
Step 4: Installing Raspbian inside the image 7
Step 5: Installing Raspberry firmware 8
Step 6: Booting the image . 9

QCow and backing images . 9
The special /tmp directory . 10
Xsysroot and security contexts . 10
Networking . 11
Virtual displays . 11
Expanding images . 11
Xsysroot on a multiuser server . 12
Cooperative distributed work . 12
Building Debian packages . 13

Cross building Debian packages 14
Looking after your images . 14
Python bindings . 15
Virtualized xsysroot . 15
Xsysroot on a VPS . 15
References . 15

1

xsysroot

Swiss army knife to manipulate operating system images

Integrate GNU/Linux systems for single-board computers.

xsysroot is free software - download the pdf version of this page

Albert Casals - 2015, 2016 - albert@mitako.eu

2

https://en.wikipedia.org/wiki/Single-board_computer
https://github.com/skarbat/xsysroot.git

Introduction

The micro computers embeded boards market is evolving at a very fast pace.

The introdution of the RaspberryPI, the Beaglebone, Cubieboard and so many
others, allows for a broad range of possibilities both in hardware and software.

Most of these boards are capable of running a regular Linux kernel with a full
fledged GNU system. Normally these boards boot the operating system from
a small storage device like SD cards, micro SD, eMMC, sometimes embedded
EEPROMS on the board itself.

Preparing and installing an operating system on these devices has a few subtleties
that make the process a bit different.

xsysroot is a tool that tries to minimize the steps needed throughout this process,
making it easier to transport the OS to the storage devices, and put them to
run on these boards.

Linux based OSes

There exist countless Open Source Linux based operating systems for these
embedded boards, many have been adapted from the former official versions
running on bigger systems.

Normally these come in downloadable images which contain a complete file
system with the boot loader and the operating system files, generally separated
in different partitions.

Mounting these images outside the boards is one of the tasks of xsysroot, which
allows for modifying the contents more comfortably without needing the board.

The ARM emulation problem

Most times we are still used to work on Intel based systems, whereas the
embedded boards are most commonly based on ARM architecture, they consume
much less energy providing an increased performance, need less transistors to do
the job, and therefore their production cost is cut down.

However this imposes a challenge when we need to build software for them,
which is commonly resolved using on-the-fly ARM emulation using QEMU, or
by setting up a cross build chain.

xsysroot relies on Qemu to allow the execution of common tasks, and it also
provides for cross compilation wrappers that help build software much faster.

This combination allows for generating ARM code from withing a Intel computer,
which can be your laptop, desktop, a Virtual Machine or even a remote VPS.

3

https://en.wikipedia.org/wiki/Comparison_of_single-board_computers
https://en.wikipedia.org/wiki/Comparison_of_single-board_computers
https://en.wikipedia.org/wiki/Raspberry_Pi#Operating_systems
http://wiki.qemu.org/Main_Page
https://en.wikipedia.org/wiki/Cross_compiler

Installing and upgrading xsysroot

xsysroot runs on ARM and Intel architectures running a recent GNU/Linux
system.

Requirements

For Intel systems, a Debian OS with the following packages installed:

• qemu-user-static, qemu-utils, binfmt-support

An account with sudo password-less access.

In both Intel and ARM architectures, you will need NBD kernel support. if
modprobe nbd does not complain, you are ready to go.

Installation

Insert the nbd module in your kernel: nbd max_part=xx' in your/etc/modulesfile.
Setxx‘ to match the number of concurrent images you want to mount.

It is also possible to install it on a Intel Virtual Machine or a remote VPS.
xsysroot is contained in one single Python module, installation is easy:

$ sudo curl -L https://raw.githubusercontent.com/skarbat/xsysroot/master/xsysroot
> /usr/bin/xsysroot

$ sudo chmod +x /usr/bin/xsysroot

Upgrades are also straight forward:

$ sudo xsysroot -U
Contacting github...
Upgraded your /usr/local/bin/xsysroot version from 1.802 to 1.906

What else do I need?

xsysroot relies on quite a few external tools. Some of them are needed, while
some others are optional, depending on the tasks you need to do.

The one core mandatory tool needed is nbd. If you can insert this Linux kernel
module on your system, you can start using xsysroot. NBD stands for Network
Block Device and allows for mounting image files as if they were physical disks.

xsysroot --tools will tell you which other tools you might need to install.

4

https://en.wikipedia.org/wiki/Network_block_device

Tutorial A: Build Raspbian for the RaspberryPI

The following sections will guide you through the steps of creating a minimal
Raspbian image to run on the RaspberryPI.

Throughout the documentation we will refer to the host and the guest systems.
The host is the system where you installed xsysroot, the guest is the image
containing Raspbian.

Step 1: Creating a blank image

The first thing we need is a blank image on which to install Raspbian, so let’s
ask xsysroot to create one. It will have a layout of two partitions: A boot FAT
and root ext4. Boot will contain the RaspberryPI firmware and the linux kernel.
Root will hold the Raspbian OS, which is basically a Debian GNU system.

$ xsysroot --geometry "raspbian.img fat32:40 ext4:800"
creating 840MB image file raspbian.img...
partition 0 type fat32 size 40MB
partition 1 type ext4 size 800MB

formatting partitions... done!

Step 2: Defining the image

It is time to install Raspbian inside the image’s root partition. We need to tell
xsysroot how to access the image we just created, this is done using a profile.

Profiles are defined in json syntax. Let’s create one.

Open an editor to create a file on your home directory called xsysroot.conf
with the following contents:

{
"raspbian" : {

"description": "Minimal Raspbian image",
"nbdev" : "/dev/nbd20",
"nbdev_part" : "p2",
"sysroot" : "/tmp/raspbian-root",
"boot_part" : "p1",
"sysboot" : "/tmp/raspbian-boot",
"tmp" : "/tmp",
"backing_image": "~/raspbian.img",
"qcow_image": "~/raspbian.qcow"

}
}

5

Let’s look at the special meaning of these fields.

nbdev tells xsysroot which NBD device should be used to map the image. Every
image needs to have a exclusive NBD device number allocated.

nbdev_part and boot_part are the partition numbers within the image. This
allows xsysroot to expose them on your host system through simple directories,
specified by sysroot and sysboot. Recall that we created 2 partitions, boot
and root.

If sysboot is specified, a special mount point will also be made available from
within the image, this allows programs running inside the image to access it
painlessly. In the case of Raspbian this is specially important to upgrade the
kernel (the so popular rpi-update tool).

backing_image refers to the original image file, and qcow_image is an incremen-
tal version of the first. In practice, this means that xsysroot will never modify
the backing image, but all changes will be contained in the qcow image.

Step 3: Accessing the image

Once the xsyroot profile is setup, and the backing_image ready, it’s time to put
the image to work.

The very first time, we need to --renew the image. This means that xsysroot
will read the backing_image, and generate the qcow_image. Both images are
now said to be bound. From here on, we can mount and unmount as many times
as we need. Read the Qcow chapter to learn more about how this works.

Let’s renew the image:

$ xsysroot --profile raspbian --renew
Creating qcow image /home/albert/raspbian.qcow of original size
Formatting '/home/albert/raspbian.qcow', fmt=qcow2 size=840000000
backing_file='/home/albert/raspbian.img' encryption=off cluster_size=65536

binding qcow image: /home/albert/raspbian.qcow
mounting root partition /dev/nbd20p2 -> /tmp/raspbian-root
mount: mount point /tmp/raspbian-root/dev does not exist
mount: mount point /tmp/raspbian-root/proc does not exist
mount: mount point /tmp/raspbian-root/sys does not exist
mount: mount point /tmp/raspbian-root/tmp does not exist
mounting boot partition /dev/nbd20p1 -> /tmp/raspbian-boot
mount: mount point /tmp/raspbian-root/boot does not exist
Mount done
Preparing sysroot for chroot to function correctly
cp: cannot create regular file `/tmp/raspbian-root/usr/bin': No such file or directory
chroot: failed to run command `/bin/bash': No such file or directory
Preparation done

6

https://github.com/Hexxeh/rpi-update

Renew done

wow. . . how scary!
Three important things happened. The first is that the qcow image has been
generated. This allows us to work on the image without ever affecting the
original backing image. It also gives us the option to rollback all changes at any
point, by calling --umount followed by --renew (more on that later).
The second thing is that xsysroot mounted the image to give us access to it
from the host. Because the image is empty, xsysroot was not able to map some
additional mount points, but that’s ok for now.
The third thing is that xsysroot tried to install the ARM emulator inside the
image, but because there is not OS yet, it was not possible. Not to worry, time
to install Raspbian in it!

Step 4: Installing Raspbian inside the image

We will use the wonderful debootstrap tool. Debootstrap basically takes a
network Debian repository as a source, and a directory as an output. On
completion, you have a minimal Debian system in it. Let’s go!
The debootstrap will be done in 2 stages. The first one is executed from the
host, and basically pulls all the packages from the network and copies them in
the output directory. The second stage is run on the guest, which unfolds and
installs the packages. Let’s do the first stage:

$ sudo debootstrap --no-check-gpg --verbose --foreign --variant=minbase
--arch=armhf jessie $(xsysroot --query sysroot)
http://mirror.us.leaseweb.net/raspbian/raspbian/

I: Retrieving Release
I: Retrieving Packages
...

This process will take a few minutes. Notice the --query parameter above, it
asks xsysroot to tell us where the root partition can be reached from the host.
Now the second stage needs to be done. For this we will first manually copy the
ARM emulator, and call deboostrap in the guest to complete it.
We needed to install the emulator manually because we started from an empty
image, normally xsysroot would do that for us.

$ sudo cp $(which qemu-arm-static) $(xsysroot -q sysroot)/usr/bin
$ xsysroot -x "/debootstrap/debootstrap --second-stage"

Great! We now have a minimal Raspbian system installed!

7

https://en.wikipedia.org/wiki/Debian-Installer#debootstrap

Step 5: Installing Raspberry firmware

At this point Raspbian is installed on the root partition, but we need to install
the firmware and the Linux kernel in the boot partition.

This is the first thing the RaspberryPI will look for when you power it up.

Recall from step 3, that some mount points were not available due to the image
being empty? Well, now they should be there. Let’s unmount and mount the
image so that xsysroot finds them.

$ xsysroot --umount
$ xsysroot --mount

To install the kernel we will use rpi-update. We first need to tell apt tool to
point to Raspbian, install curl and binutils, and run rpi-update !

We are going to open a ARM shell inside the image to do so.

$ xsysroot --chroot
Starting sysroot shell into: /tmp/raspbian-root as the superuser
$ echo "deb http://archive.raspbian.org/raspbian jessie main contrib non-free"
> /etc/apt/sources.list

$ apt-get update
$ apt-get install curl binutils -y
$ curl -L --output /usr/bin/rpi-update
https://raw.githubusercontent.com/Hexxeh/rpi-update/master/rpi-update

$ chmod +x /usr/bin/rpi-update
$ /usr/bin/rpi-update

The kernel is now installed on the boot partition. We are going to need to tell it
where the root partition is located:

$ echo "dwc_otg.lpm_enable=0 logo.nologo console=tty1 root=/dev/mmcblk0p2
rootfstype=ext4 elevator=deadline rootwait quiet" > /boot/cmdline.txt

There is one last important bit. The superuser has no password.

$ passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

That’s it! The image is ready to boot on the RaspberryPI. Press Ctrl-D or type
exit to escape from the ARM shell.

8

http://wiki.beyondlogic.org/index.php?title=Understanding_RaspberryPi_Boot_Process
https://github.com/Hexxeh/rpi-update

Step 6: Booting the image

Recall from step 3, that the qcow_image holds all the changes applied to the
image, and that the backing_image is never touched. It still contains the empty
image we created on step 1.

That means that Raspbian is actually on the qcow image, so we need to take
this one and convert it to a raw format. Let’s do that:

$ xsysroot --umount
$ qemu-img convert $(xsysroot --query qcow_image) raspbian-bootable.img

Ready! We can now burn the image to an SD card and boot it on the Raspber-
ryPI.

$ sudo dd if=raspbian-bootable.img of=/dev/sda bs=4M

/dev/sda would be the physical disk where the SD Card is connected to your
computer.

Notice that the image fits in 1GB SD card, and that the root partition still has
about 200MB free space. Enjoy!

QCow and backing images

xsysroot makes the images available through QEmu QCOW image format.

The qcow technology allows for a number of advantages, for example recreating
the source image any number of times to rollback any changes.

Each time you --renew a xsysroot profile, the qcow image will be recreated from
scratch, and you will be working with an exact same copy of the original backing
image.

The backing image is never written into. The qcow is an incremental list of
changes and it always plays along with the backing image. Removing the backing
image makes the qcow version completely useless.

This combination allows to rollback changes easy and fast, for example:

$ xsysroot --renew
$ touch $(xsysroot -q sysroot)/i_was_here
$ xsysroot --umount
$ xsysroot --renew
$ ls -l $(xsysroot -q sysroot)/i_was_here
file not found

9

https://en.wikipedia.org/wiki/Qcow

Another advantage is that for small changes, the qcow image will be relatively
small, it becomes a convenient way to transport changes on the original image
across the network by simply sending the qcow image instead.

Once the backing_image has been renewed, you can mount and unmount it as
many times as you need, effectively working on the qcow image.

The special /tmp directory

It is frequently the case that you need to access files that reside on the host from
the guest. To make this simpler, xsysroot will expose a directory of your choice
on the host through the tmp setting.

Set the tmp key in the xsysroot.conf file to point to a directory on your host
system. Xsysroot will bind this directory each time you mount it, and release it
when you unmount it.

This means that all files will be preserved on your host and reachable from the
guest from its /tmp/ folder.

Xsysroot and security contexts

xsysroot will chroot into the image as root, using the --chroot option. It is also
convenient to run programs as a different user inside the image, like this

$ xsysroot -x "@guest_user bash"
$ whoami
guest_user

Another advantage is the use of the sudo tool inside the guest. There is a special
option which should make sudo work correctly without prompting for passwords,
--jail.

In Jail mode, the commands poweroff, shutdown and reboot will be disabled,
if found. This allows for a more protected space, which can be specially useful
for testing software.

$ xsysroot --execute "@user bash"
$ whoami
user
$ sudo whoami
root

10

Networking

Networking from withtin the image is readily available, because xsysroot maps
the /proc filesystem into the host. The guest will be accessing the outside
network from the host IP address.

However, the DNS records can be isolated to point to different name servers.
xsysroot by default does it for you, it makes the guests point to 109.69.8.34.
You can change it to your preferred one by changing the Xsysroot script.

Virtual displays

It is also possible to run X11 apps inside the guest.

If you install Xvfb on the host, xsysroot will allow the guest to run X11 apps
which will be connected to a fake Xserver. Because there is no physical display,
you will need to take a screenshot with the --screenshot option to see their
GUI appearance.

Alternatively, you can install x11vnc on the host if you need to interact with
X11 GUI apps. In this case, xsysroot will start a vnc server attached to the
xsysroot. This will allow you to bring the display to a remote device using a
VNC client.

In either case the virtual displays will start and stop each time you mount and
umount the image, respectively. When opening a shell inside the guest with
--chroot, xsysroot will automatically export the DISPLAY to point to the virtual
display.

Each xsysroot profile has its own independent virtual display, which means you
can have one virtual display per xsysroot image.

Expanding images

It is convenient sometimes to expand the last partition of an image to fit a larger
size. Say you start from a 2GB image, but you need to install an extra amount
of software or data that would not fit.

Or, you need to publish an image that takes all the available space on a 32GB
memory card.

In order to do that, you specify a qcow_size with the total desired size of the
image, for example "qcow_size": "3G". The profile needs to be unmounted
and renewed upfront, for this to work. Below is an example:

$ xsysroot --renew
$ xsysroot --umount

11

$ xsysroot --expand
Connecting image /home/sysop/scratch/haw.qcow to find and expand last partition
Partition number: 2 start: 40.9MB end: 239MB size: 198MB type: ext3
/dev/nbd12p2: 11/48384 files (0.0% non-contiguous), 11772/193536 blocks
resize2fs 1.42.5 (29-Jul-2012)
Resizing the filesystem on /dev/nbd12p2 to 472064 (1k) blocks.
The filesystem on /dev/nbd12p2 is now 472064 blocks long.

Image partition expanded successfully, new layout:
Partition number: 2 start: 40.9MB end: 524MB size: 483MB type: ext3
/dev/nbd12 disconnected

Expansion is applied on the last partition of the image, and only on filesystems
of types ext2, ext3 and ext4.

After the image has been expanded, simply mount it again and you should have
the extra space available. Consult the specifications of your SDcard to find the
exact boundaries of the real physical size.

Xsysroot on a multiuser server

The configuration file xsysroot.conf can be placed under the /etc directory, or
on the user’s home directory. If it is found under /etc, the users home directory
file will not be read.

The reason behind this is because the NBD device files allocated to access the
image need to be exclusive for each image. Allowing for multiple configurations
would easily end up in a messy combination with unexpected results.

So the best practice to use xsysroot in a multiuser environment is to use one
single configuration file located at /etc/xsysroot.conf.

This way, all users on the system will have access to all images defined in it.

Additionally, there is a protection mechanism when accessing images from
multiple shells. If you try to unmount an image which is currently being accessed
elsewhere, xsysroot will complain and tell you which processes are currently
running on the image.

You can also find such processes by executing xsysroot --running command.

Cooperative distributed work

When several remote users need to work on an image, without access to a central
xsysroot server, it can become complicated to distribute the changes across the
network, as the images are normally large in size.

12

Because xsysroot will always work with qcow incremental changes, there exists
the option to share the work by sending the qcow image instead, which will
normally be much smaller in size.

In this scenario, all users have xsysroot installed on their local systems, with the
same configuration and backing images, but they just need to share the qcow
image, effectively looking only at the incremental changes.

For example, for a user to receive an upgraded image from another user, he
would do the following steps on his local system:

$ xsysroot --umount
$ cp updated_qcow_image.qcow $(xsysroot --query qcow_image)
$ xsysroot --mount

You should now have the incremental changes automatically applied at your end.
Keep in mind that the paths to the backing and qcow image need to be the
same, otherwise the backing image path pointers will not be bound correctly.

Building Debian packages

One of the most practical uses of xsysroot is to build software for specific ARM
based distributions without the need of the target hardware.

In this chapter we are going to create a very simple project and build a De-
bian Package natively for the Beaglebone board, in its official Debian Jessie
distribution. The project will be a simple print of “hello world”.

So let’s downlad the latest image, and create a xsysroot profile to access it. Refer
to the Tutorial chapter on how to do that.

Chances are that we want to save our project in a source repository, from within
the host, therefore we need a way to access the sources from both the host and
the guest. We will use xsysrooot tmp profile variable for that. Let’s create a
simple “hello world” app.

$ cd $(xsysroot --query tmp)
$ mkdir myapp; cd myapp

Create a file myapp.c containing this code snippet:

#include <stdio.h>
int main(void) {

printf ("hello xsysroot\n");
return 0;

}

13

http://beagleboard.org/bone
https://beagleboard.org/latest-images

We are now asking xsysroot to create us a Debian package skeleton folder, and
telling Debian builder what to compile and package:

$ xsysroot --skeleton .
$ echo "hello /usr/bin" > debian/install

Edit a file called Makefile containing these rules:

all: hello
hello: hello.c

gcc -Wall hello.c -o hello

We are ready to build the package natively from the guest, the Jessie for the
Beaglebone system. The debian folder contains all the build files, you might
want to change those to your package needs.

$ xsysroot --chroot
Starting sysroot shell into: /tmp/beaglebone as the superuser
$ cd /tmp/myapp
$ apt-get install devscripts
$ debuild -b -us -uc

That’s it! At the /tmp directory you should have a debian package ready to
install on the Beaglebone.

Cross building Debian packages

The QEmu emulator is quite slow to run, so for larger projects you might consider
cross building the software. This implies installing a cross toolchain on the host,
and running debuild on the host instead.
Xsysroot gives you an option to install the build dependencies on the guest image
for you, as well as a simple wrapper to call debuild. You will need to adapt
debian/rules to explain how to cross compile.
From within your project’s root directory, execute these commands from the
host:

$ xsysroot --depends
$ xsysroot --build

Looking after your images

$ xsysroot --list
$ xsysroot --integrity
$ xsysroot --zerofree

14

Python bindings

Xsysroot is written in Python, as one single code module. To expose xsysroot to
Python, do a xsysroot --upgrade, and at this point you should be able to use
it directly:

$ import xsysroot
$ print xsysroot.__version__
1.913

Accessing xsysroot from Python allows for automating a lot of tasks on foreign
images.

As an example, This xsysroot Python script builds the Love 2D framework inside
a RaspberryPI image.

Virtualized xsysroot

Xsysroot on a VPS

References

15

https://github.com/skarbat/pilove/blob/master/pilove.py
https://love2d.org/

	xsysroot
	Swiss army knife to manipulate operating system images
	Introduction
	Linux based OSes
	The ARM emulation problem

	Installing and upgrading xsysroot
	Requirements
	Installation
	What else do I need?

	Tutorial A: Build Raspbian for the RaspberryPI
	Step 1: Creating a blank image
	Step 2: Defining the image
	Step 3: Accessing the image
	Step 4: Installing Raspbian inside the image
	Step 5: Installing Raspberry firmware
	Step 6: Booting the image

	QCow and backing images
	The special /tmp directory
	Xsysroot and security contexts
	Networking
	Virtual displays
	Expanding images
	Xsysroot on a multiuser server
	Cooperative distributed work
	Building Debian packages
	Cross building Debian packages

	Looking after your images
	Python bindings
	Virtualized xsysroot
	Xsysroot on a VPS
	References

